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In our previous papers on the molecular fuzzy symmetry, we analyzed the basic
characterization in connection with the fuzzy point group symmetry. In this paper,
polyynes and their cyano-derivatives are chosen as a prototype of linear molecules to
probe the one-dimensional fuzzy space group of parallel translation. It is notable that
the space group is an infinite group whereas the point group is a finite group. For the
fuzzy point group, we focus on considering the fuzzy characterization introduced due
to the difference of atomic types in the monomer through point symmetry transforma-
tion in the beginning; and then we consider the difference between the infinity of space
group and the finite size of real molecules. The difference between the point group and
the space group lies in the translation symmetry transformation. This is the theme of
this work. Starting with a simple case, we will only analyze the one-dimensional trans-
lation transformation and space fuzzy inversion symmetry transformation in this paper.
The theory of the space group is often used in solid state physics; and some of its
conclusions will be referred to. More complicated fuzzy space groups will be discussed
in our future papers.
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1. Introduction

In theoretical chemistry, the fuzzy symmetry is an interesting area where a
few important results [1–4] have been obtained. In our previous work [5–9] based
on the study of the fuzzy symmetry character of molecules and their orbitals,
we have analyzed the fuzzy symmetry of the point group. In addition, we have
inquired into the time-space periodic symmetry and corresponding conservation
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Figure 1. The atomic serial numbers and Cartesian coordinates for the polyyne and their
cyano-derivatives.

rules [10]. However, there is the ordinary symmetry but not the fuzzy symmetry
in that paper. Now we are in a position to start examining the fuzzy symmetry
related to the space group. Although we have analyzed the fuzzy symmetry rela-
ted to the space group about C16H2 (polyyne with 16 C-atoms) [7] in brief, only
the membership function for the individual molecule is introduced; more impor-
tant area such as the representation components for the molecule orbitals (MO)
has not been touched. This will be examined in this paper in some detail. The
parallel translation fuzzy group symmetry of the one-dimensional lattice struc-
ture of the linear molecule will be dealt with in this work. More complex fuzzy
space groups will be discussed in our future papers.

2. The fuzzy symmetry of molecular skeletons

2.1. Computational details

The atomic serial numbers and Cartesian coordinates for the molecules ana-
lyzed in this paper are shown in figure 1, where � usually denotes the carbon
atom, whereas it may also denote the nitrogen atom in the terminal (serial num-
ber: 0 and n − 1). As the terminal atom is a carbon atom, it may bind a hydro-
gen atom outside; when the terminal atom is a nitrogen atom, it may bind none.
In figure 1, may be a single or triple bond. The z-axis and the molecular
axis are taken to be the same; the x and y axes are orthogonal to each other
but lie in the vertical plane of the z-axis. The MOs, the LCAO of valence shells,
were calculated at a certain theoretical level using the Gaussian 98 program [11].
The π-MOs are combined using the px and py AOs. All the π-MOs are two-fold
degenerate, i.e., both their energies and membership functions are the same; and
thus to analyze one of them should be adequate for our purpose. The σ-MOs are
obtained by combination of the sp(z)-AOs, and these MOs are further from the
frontier orbitals and their chemical activity will be less than that of the π-MOs.
Like our previous paper [7, 8], and in this paper we will not analyze the σ-MOs.

The membership function of a molecular skeleton related to the symmetry
transformation Ĝ [5–9] may be written as:

µY(Ĝ/G; M) = [ΣJ(YJ ∧ YGJ)]/[ΣJ(YJ)] (1)
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where YJ and YGJ are the criteria of atoms J and GJ, and GJ is produced from
J atom though the symmetry transformation Ĝ. Y may be the atomic number
(ZJ) for the molecular skeleton. According to the LCAO-MO scheme, the ρth
MO Ψρ may be expressed as:

Ψρ = ΣJΣiaρ(J, i)φ(J, i) (2)

where φ(J, i) is the ith AO of the Jth atom; aρ(J, i) is the corresponding coeffi-
cient, usually real number. The relative criterion YJi for φ(J, i) can be taken as
a2
ρ(J, i), and so equation (1) changes to:

µY(Ĝ/G; M) = [ΣJΣi (YJi ∧ YGJi )]/[ΣJΣJi (YJi )] (3)

If there is only one AO in each atom to combine the MO, like the π-MO we
analyzed in this paper, equation (3) will be reduced to equation (1).

2.2. The membership functions for molecular skeletons

Now we start to analyze the fuzzy symmetry of molecular skeletons. The
MOs will be discussed in later sections.

If Ĝ is the parallel translation (towards the right or left) of m interatomic
distance units, T̂ −m, the membership function of polyyne CnH2 molecular ske-
leton may be given as [7]:

µYT−m = [ΣJ(YJ ∧ YT−mJ)]/[ΣJ(YJ)] (4a)

= [ΣJ(ZJ ∧ ZT−mJ)]/[ΣJ(ZJ)]
= [(n − m)ZC + 2ZH]/[nZC + 2ZH] = (6n − 6m + 2)/(6n + 2) = µZT−m

(4b)

where ZJ is the atomic number. As shown in figure 2, the membership functions
of some polyyne CnH2 molecular skeletons exist accompanying the transforma-
tion of translation of m interatomic distance units, T̂−m. Figure 2(A) shows the
relationship of membership function vs. n, and figure 2(B) membership function
vs. m. As shown in figure 2(A), for translation transformation T̂ − m, when n >

10m, the membership function will be larger than 0.8. If we consider the polyyne
as a one-dimensional crystal, the molecular crystal cell may has m atoms. As the
crystal size is more than tenfold of the cell, the membership functions related to
the space parallel translation group will be near or more than 0.9. It ought to be
corrected in the ordinary crystal. As shown in figure 2, the membership function
will be cut down as m increases or n decreases, and is the linearly dependent on
m by the way. For the frontier orbilals [12] of C16H2, the dependence between
the membership function and m is sawtooth-like [7]. This arises from the alter-
nation of single- and tri- bonds. When we examine the MO fuzzy symmetry, the
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Figure 2. The membership functions for the some polyyne (CnH2) molecular skeletons related to m

inter-atomic distance transformation (T̂ − m). (A) the membership functions vs. the numbers of C
atoms, n(C); (B) the membership functions vs. the numbers of translation inter-atomic distances, m.
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Figure 3. For the polyynes, the dependent relationship between the wave numbers [14] of the mole-
cular electronic spectral bands and the membership functions in relation to the translation fuzzy
symmetry for the polyyne molecules.In this figure, the various points relate to various spectral
bands, and the corresponding regression lines are denoted.

atomic criteria include such alternation, but the atomic criteria for the molecular
skeleton do not. Therefore, we choose m as an even number.

Using the total energies (TE) calculated at RB3LYP/cc-pVDZ level [13] and
divided by the number (l = n/2) of C ≡ C units in the polyyne, we had obtai-
ned the relationship for T E/l vs membership function in linearly dependent [7].
As shown in figure 3, such a dependent relationship occurs between the wave
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Figure 4. The rule of homologous linearity for polyyne membership function (µZT). The number
following T denotes the number of translation interatomic distance units (m).

numbers [14] of the molecular electronic spectral bands vs the membership func-
tions related to the translation fuzzy symmetry for the polyyne molecules. Jiang
has put forward a so-called ‘the rule of homologous linearity’ [14] to rationalize
such relationships. He pointed out that there are homologous factors for homo-
logous compounds, and there is a linear dependency between the properties of
these compounds and their homologous factors. In fact, for the polyyne, there
is also a linearly dependency between the membership functions of their trans-
lation fuzzy symmetry and their homologous factor. As shown in figure 4, all of
the membership functions linearly depend on m. It may be useful to examine the
homologous linearity further.

Equation (4a) can be applyed to other molecules including other types of
atoms with different corresponding criteria Y. For the polyyne, J is summed from
serial number of the atom, −1 to n. We focus on the π-MO in this paper, and so
the AO of the hydrogen atom is not needed. As one or both end carbon atoms
are substituted by nitrogen atoms, the membership functions for the molecular
skeleton related to the transformations T̂ − m are given respectively as follows,

µYT−m = [ΣJ(ZJ ∧ ZT−mJ)]/[ΣJ(ZJ)]
= [(n − m)ZC + ZH]/[(n − 1)ZC + ZN + ZH] = (6n − 6m + 1)/(6n + 2)

= µ1
ZT−m (5a)

and

µYT−m = [ΣJ(ZJ ∧ ZT−mJ)]/[ΣJ(ZJ)]
= [(n − m)ZC]/[(n − 2)ZC + 2ZN] = (6n − 6m)/(6n + 2) = µ2

ZT−m

(5b)
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Figure 5. The membership functions for some polyynes (CnH2) and their cyano-derivatives
(Cn−1NH and Cn−2N2) in relation to (A) translation transformation T̂ − 2 for CnH2, Cn−1NH
and Cn−2N2; (B) the fuzzy space inversion transformation P̂ about two various symmetrical centre,
P(CC) and P(C), for Cn−1NH. For reference, the membership functions related to corresponding
T̂ − 2 are also shown.

It is notable that here m �= 0. Translation transformation towards right, T̂ − m,
the criterion YJ will be changed to YJ+m, but that towards left, T̂−(−m), YJ will
be changed to YJ−m. Though the (YJ ∧YJ+m) and (YJ ∧YJ−m) may be unequal,
but ΣJ(YJ ∧ YJ+m) and ΣJ(YJ ∧ YJ−m) are equalization. This is because,

ΣJ(YJ ∧ YJ+m) = (Y0 ∧ Ym) + (Y1 ∧ Ym+1) + (Y2 ∧ Ym+2) + . . . + (Yn−m ∧ Yn)

= (Ym ∧ Y0) + (Ym+1 ∧ Y1) + (Ym+2 ∧ Y2) + . . . + (Yn ∧ Yn−m)

= ΣJ(YJ ∧ YJ−m) (6a)

Figure 5(A) shows the membership functions for the polyyne (CnH2) and
corresponding cyano-derivatives (Cn−1NH and Cn−2N) related to the translation
transformation T̂ − 2. It may be shown that the membership functions for these
compounds are close.

According to equation (6a), it can be shown that the membership func-
tion of the inter-reversible symmetry transformation of m (integer) interato-
mic distance units towards right and left are the same. This satisfies the first
condition for membership functions of fuzzy group [3, 15] and the condition of
identity transformation (m = 0). However, another condition could not usually
be satisfied,

µYT−(m+m′) � µYT−m ∧ µYT−m′ (6b)

and thus the fuzzy set of the space parallel translation transformation cannot
form a fuzzy group.
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For the above three molecular skeletons, the corresponding fuzzy parallel
translation group may be denoted as follows by means of Zadeh’s method [16, 17]:

T∼(CnH2) =
∑

m

[(6n − 6m + 2)/(6n + 2)]/[T̂ − m] (7a)

T∼(Cn−1NH) =
∑

m

[(6n − 6m + 1)/(6n + 2)]/[T̂ − m] (7b)

T∼(Cn−2N2) =
∑

m

[(6n − 6m)/(6n + 2)]/[T̂ − m] (7c)

As all of the m related to the fuzzy parallel translation group are even, m in the
summations of equation (7) will only run over the even number.

Another important fuzzy symmetry transformation for linear molecules is
that of space inversion. Polyyne has a symmetric centre. The symmetric element
of the conventional point group is definite, but the fuzzy symmetric element can
be selected in various ways [7]. Membership functions corresponding to different
ways differ, although all of they are between 0 and 1. They may be calculated
using equation (1) with Ĝ taken as the space inversion transform (P̂).

For the polyyne molecule (figure 1), the symmetric centre would be the
position between n/2 = q-th and the (q + 1)-th C atoms. If q is odd the centre
will be on a triple C ≡ C bond, and if q is even the center is on a single C–C
bond. As the polyyne molecule is composed of infinite C ≡ C units, it can be
thought as a one-dimensional infinite crystal formed by such C ≡ C cells. The
symmetric centre may be between any two consecutive C-atoms, and so there
are infinite symmetric centre. Since the polyyne molecule is composed of finite
C ≡ C units, the common symmetric centre is unique, but the fuzzy symme-
tric centre can be selected in various ways. For such fuzzy symmetric centre, the
relative membership functions will be between the 0 and 1. Meanwhile, the mem-
bership function will become smaller as the distance between fuzzy centre and
common symmetric centre increases. For the polyyne molecule composed of n

C-atoms, when the fuzzy symmetric centre lies l C-atoms away from the com-
mon symmetric centre, the membership function related to the fuzzy symmetric
centre can be obtained as follows:

µYP(l) = [ΣJ(YJ ∧ YP(l)J)]/[ΣJ(YJ)] (8a)

As the criteria are the atomic numbers, we get:

µYP = [ΣJ(ZJ ∧ ZP(l)J)]/[ΣJ(ZJ)] = [2{(n/2) − l}ZC + 2ZH]/[nZC + 2ZH]
= [6n − 12l + 2]/[6n + 2] = µZP (8b)

As l=0, it will be the common symmetric centre, and the membership
function is one. On the other hand, the membership function for the iden-
tity transformation is also one. Interestingly, equations (8a, b) and (4a, b)
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are similar. If the distance between fuzzy symmetric centre and common
symmetric centre is l C-atoms, the membership function of such fuzzy space
inversion transformation ought to be equal that related to the translation of a
polyyne with m C ≡ C units (i.e., m = 2l atoms). It is clear that this conclusion
can only be established when the common symmetric centre exists; otherwise
the distance from the common symmetric centre cannot be determined. As an
example of dicyano-polyyne molecular skeletons, if the fuzzy symmetric centre is
j C-atoms from the common symmetric centre, the membership function rela-
ted to the space inversion transformation will be (6n − 12j)/(6n + 2), and if
m = 2j , it will be the same as that in equation (5b). However, for corresponding
monocyano-polyyne molecular skeleton, there is no common symmetric centre,
we can only analyze its fuzzy symmetric centre. As shown in figure 1, if the nitro-
gen atom is assigned serial number J = 0, and the carbon atom that links an out-
side hydrogen atom J = n−1, the fuzzy symmetric centre, P(CC), is between two
carbon atoms with serial numbers J = q − 1 = (n/2) − 1 and J = q = (n/2),
and its corresponding membership function is 6n/(6n+2). However, if the fuzzy
symmetric centre, P(C), of the same molecule is set on the carbon atom with
J = q = (n/2), the relative membership function is (6n− 4)/(6n+ 2). Both mem-
bership functions will be between the 0 and 1, as shown in figure 5(B) for those
related to the fuzzy space inversion transformation P̂ about these two fuzzy sym-
metric centers of monocyano-polyyne molecules. For reference, the membership
function corresponding to translation transformation T̂ − 2 was shown in this
figure.

3. The membership functions for molecular orbitals

3.1. Primary analyze

The MOs of the polyyne derivatives may be analyzed similarly as in
section 2.2, but atomic number Z (as the atomic criteria Y of the molecular
skeleton) must be changed to the atomic criteria of the MO as in section 2.1.
Since the criteria of the same atoms can be different, therefore the calculation
of membership functions for MOs will be more complicated than that for the
molecular skeleton. The square of the LC-px or py AO coefficient was used as
the atomic criterion of the π-MO, whereas the summation of the square of LC-
sAO coefficients and the square of LC-pz AO coefficients for the σ-MO was used
as the atomic criterion [5–6] of the σ-MO.

As shown in the previous paper [7], for the HOMO and LUMO of
hexadec-polyyne, C16H2, the membership functions related to transformation
T̂ − m decrease saw-toothedly as m increases. This arises from the alternation
of single- and triple-bonds. The alternation effect is naturally incorporated in
the LCAO coefficients of the MO, and reflected by the membership function
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Figure 6. The membership functions in relation to the fuzzy translation for the HOMO and LUMO
(at HF/STO-3G level) of various polyyne molecules.

although it has not been introduced directly into the function. However, the
membership function for the molecular skeleton does not incorporate such effect,
and so it depends on m smoothly (i.e., linearly). Other molecules may also
involve in the alteration of bond-lengths, and such effect may be merged into
the atomic criteria of MO too. Such phenomenon means that the corresponding
one-dimensional translation unit ought to include two inter-atomic distances. In
other words, the one-dimensional lattice cell including two atoms, and m will be
an even number for transformation T̂−m. In this paper, therefore, we often ana-
lyze the case of even m.

The membership function related to the fuzzy translation transformation
for some frontier MOs of the polyyne obtained at HF/STO-3G level is shown
in figure 6. Each π-MO relates only to one AO from every atom. It is no saw-
toohed as [7] if all of m are even numbers. As shown in figure 6, for the same
polyyne molecule, the membership function of HOMO will be larger than that
of LUMO. In addition, the membership function will decrease obviously with
the increase of translation magnitude m. As the same m value, the smaller the
polynne molecule (i.e., smaller n) ought to be the less the membership function.

3.2. The membership functions for MOs of C16H2, C15NH and C14N2

Here the 16-carbon-polyyne (C16H2) and their cyano-derivatives with one
or both ethynyls (-C ≡ CH) substituted by -C ≡ N, i.e., H(C ≡ C)7(CN) or
(C ≡ C)6(CN)2, are taken as the prototypical. We also consider only transfor-
mation T̂ − m with even m. To start with, as above we calculate and examine
the membership functions of certain frontier MOs of C16H2 related to the trans-
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Figure 7. The membership functions related to the fuzzy translation transformations, for certain
MOs of polyyne C16H2 at HF/STO-3G level.

Table 1
The membership functions for some MOs of C16H2 in relation to the fuzzy translation

transformations*

OMO VMO

m in T̂ − m OMO-1&2 OMO-3&4 OMO-5&6 VMO-1&2 VMO-3&4 VMO-5&6

0 1 1 1 1 1 1
2 0.75685 0.59399 0.52261 0.68042 0.53877 0.51878
4 0.80483 0.59718 0.42912 0.78071 0.58329 0.40628
6 0.62460 0.29615 0.25652 0.58446 0.30924 0.27251
8 0.44659 0.20081 0.56732 0.39285 0.23367 0.62540

10 0.30915 0.32205 0.33387 0.25865 0.37986 0.27840
12 0.17653 0.46439 0.09980 0.13146 0.40719 0.12788
14 0.09709 0.27389 0.23544 0.06931 0.22104 0.29262
16 0.02637 0.09534 0.17715 0.01193 0.05757 0.13376

*All of the MOs in this table are two-fold degenerate.

formation at HF/STO-3G level, and show in table 1 and figure 7. Utilizing the
data in table 1, we can readily write the Zadeh formulae [16, 17] for various MOs.
In figure 7(A), the membership functions for the occupied MO (OMO) near the
HOMO are shown, where OMO1 denotes the degenerate HOMO, OMO3 the
degenerate OMO next to OMO1 (HOMO), and OMO5 the degenerate OMO
next to OMO3. In figure 7(B), however, the membership functions for the virtual
MO (VMO) near the LUMO are shown, where VMO1 is the degenerate LUMO,
VMO3 is the degenerate VMO next to VMO1 (LUMO), VMO5 is the degene-
rate VMO and next VMO3. It is notable that these MOs are two-fold degenerate
(for both their energy and membership function), and so the even suffixes may
be omitted. Interestingly, figures 7(A) and (B) are similar to each other for OMO
and VMO with the same suffix.

Now we examine polyyne C16H2 and its monocyano-derivative, C15NH and
dicyano-derivative, C14N2. Figures 8(A) and (B) show the membership functions
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Figure 8. The plots of membership functions related to fuzzy translation transformation vs. the
translation magnitude m, for the frontier MO (at HF/STO-3G level) of C16H2, C15NH and C14N2
for (A) OMO1 for HOMO, and (B) VMO1 for LUMO.

related to translation transformation T̂ −m for the HOMO and LUMO of these
compounds, respectively. The correlation curves of membership functions vs. m

are similar to each other for these frontier MOs of these molecules. However,
for the same m, the membership functions of HOMO decrease from C16H2,
to C15NH and C14N2, whereas those of LUMO increase for the same order.
Moreover, the membership function for the HOMO of C15NH is close to that of
C14N2, but for the LUMO of C15NH is close to that of C16H2. Figure 9 shows
the atomic criteria of these MOs, where the nitrogen atomic serial number is 0
in C15NH, but it is 0 and 15 in C14N2. Other serial numbers are in connection
with the carbon atom. As shown in the figure, the atomic criteria fluctuate with
the rise and fall of m alternately for the most cases. This is similar to the case
of a one-dimensional space fuzzy periodic lattice composed of two atoms, where
the membership function related to translation transformation T̂−2 ought to be
larger than that of other translations.

Figure 10 shows the plot of membership functions vs. m related to
translation transformation T̂ − m for certain other MOs in these molecules. It
seems that for C16H2 and C14N2 the OMO and VMO with same suffixes are
closer than do those for C15NH. As mentioned above, the membership func-
tions related to transformation T̂ − m of the molecular skeleton and the MO is
very different, in particular, those of non-frontier MOs. They often fluctuate vs.
m. though they decrease monotonically with m for the frontier MO. This non-
linearity is different from the dependence for the skeleton.

There is a space inversion symmetric centre in C16H2 and C14N2, and
this centre will often be represented in their MOs. Consequently, the related
membership function ought be one. As the fuzzy symmetric centre translates j

inter-atomic distance units from the common symmetric centre, the membership
function related to the fuzzy symmetry transformation of space inversion is equal
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Table 2
The membership functions for some MOs of C15NH in relation to the fuzzy space inversion

transformation*

OMO VMO

The positions of main membership The positions of main membership
inversion center functions inversion center functions

OMO-1 (8,9) 0.8273 VMO-1 (6,7) 0.8916
OMO-3 (8,9) 0.8565 VMO-3 (6,7) 0.7746
OMO-5 (8,9) 0.8399 VMO-5 (7,8) 0.7743
OMO-7 (8,9) 0.6650 VMO-7 (7,8) 0.7803

*All of the MOs in this table are two-fold degenerate. The position of main inversion centre with
(i, i + 1) means the positions between the atomic serial numbers i and i + 1.

to that of 2j inter-atomic distance unit translation, which is similar to the case
for the molecular skeleton with a symmetric centre.

C15NH does not have a common space inversion symmetric centre, and so
we can only analyze the fuzzy space inversion symmetry according to a chosen
symmetric centre. The membership functions of a certain MO would depend on
the choice of the fuzzy symmetric centre. The fuzzy symmetric center with the
maximal value of membership function may be called main symmetric centre.
The membership functions of certain MOs of C15NH related to the fuzzy space
inversion transformation of the main symmetric centre are showed in table 2.

4. The irreducible representation components

4.1. Computation detail

As regards to analyze the irreducible representation component for MOs,
the first question is, what representation space will be expanded? In addition to
the point group representation, we need to consider the space group representa-
tion. It is important that now we must consider the parallel translation group, its
corresponding states and representations. In solid state physics, there are already
some important results, in particular, the Bloch’s theorem [18, 19]. According to
this theorem, the state of the periodic space symmetry may be described by the
Bloch function.

In the one-dimensional space (one-dimensional lattice) of a periodic unit
length a, the eigenstate Φk related to the translation of m periodic transforma-
tion T̂ − m is given below [20, 21],

T̂ − mΦk = exp(kmai)Φk (9)

where k is the wave vector, a number or a scalar in one-dimensional case. Accor-
ding to the Bloch theorem, the so-called Born-Karman boundary condition is
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Table 3
The characters of parallel translation transformation group for one-dimensional lattice

Parallel
translation T̂ − 0 T̂ − 1 T̂ − 2 . . . . . . T̂ − m . . . . . . T̂ − (n − 1)

Irreducible [where : ε = exp(2πi/n)]
representation

Γ0 1 1 1 . . . . . . 1 . . . . . . 1
Γ1 1 ε ε2 . . . . . . εm . . . . . . ε(n−1) = ε∗
Γ2 1 ε2 ε4 . . . . . . ε2m . . . . . . ε2(n−1) = ε2∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γν 1 εν ε2ν . . . . . . εmν . . . . . . ε(n−1)ν = εν∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γn−1 1 ε(n−1) = ε ε2(n−1) = ε2∗ . . . . . . ε(n−1)m = εm∗ . . . . . . [ε(n−1)]×
[ε(n−1)] = ε

used. For the one-dimensional lattice composed of n lattice points, the value of
(kma) would be in (−π, π). According to such boundary continuity, k will be
ν(2/na), where ν is a positive integer, taking values of 0, 1, 2, . . . , n−1. In equa-
tion (9), term exp(kmai) becomes exp[mν(2πi/n)] ≡ εmν , and is an eigenvalue of
the wave-vector state Φk related to the T̂−m transformation, maybe called wave-
parity [10, 20, 21]. The term Φk will then depend on ν uniquely. The wave-vector
state Φk with discrete ν belongs to an irreducible representation, Γν′ , related to
the one-dimensional periodic parallel translation group. This group is an Abe-
lian group, and so all of its irreducible representations are one-dimensional. The
corresponding characters are shown in table 3. It is clear that this group and the
Cn point group are isomorphic. This result means that the Born-Karman boun-
dary condition have been introduced implicitly. Of course, the Born-Karman
boundary condition is strictly correct only when n is infinite, and it is only an
approximation for the finite molecule, i.e., a finite n. It should also be notewor-
thy that the value field is a complex one. The state of wave vector correspon-
ding to the one-dimensional irreducible representation ought to be the common
eigenstate related to all symmetry transformations included in this parallel trans-
lation group. The eigenvalue (character) may be a complex.

Some states belonging to various irreducible representations may be
degenerate. For example, two states belonging to Γν and Γn−ν irreducible repre-
sentations (table 3) may be degenerate. Both states are the eigen-states related
to all symmetry transformations in the group, and some of their eigenvalues
are indeed complex. However, for the real field when it is not the eigenstate
for the symmetry transformation in corresponding parallel translation group to
which it belongs, the two-dimensional irreducible representation will be intro-
duced necessarily. As the degenerate states belong to Γν and Γn−ν irreducible
representation, that may be composed of states belonging to the two dimensional
irreducible representation Eν as the case for the C6 point group [9] we exami-



X. Zhao / Fuzzy space periodic symmetries for polyynes 1155

ned. Since we are examining the irreducible representation in the complex field,
the relative projection operators [22] ought to be a complex formula. We may
start with the projection and then do the normalization for further analysis and
calculation.

According to table 3, the projection operator related to Γν irreducible
representation may be shown as,

P̂(Γν) =
n−1∑

m=0

ε−mν T̂ − m, (10)

where ε−mν is the complex conjugate of the eigenvalue related to T̂ −m, and the
normalizing factor is ignored. We consider only one AO for each atom that is
combined into the MO, Ψρ as shown in equation (2). As the projection operator,
P̂(Γν) in equation (10), acts on MO Ψρ, the part of the MO that belongs to Γν

irreducible representation, Ψρ(Γν), can be obtained,

Ψρ(Γν) = P̂(Γν) Ψρ

n−1∑

m=0

ε−mν T̂ − m Ψρ =
n−1∑

m=0

ε−mν T̂ − m

[
n−1∑

J=0

aρ(J)φ(J)

]

=
n−1∑

m=0

n−1∑

J=0

aρ(J)ε−mν T̂ − mφ(J) (11)

where,

Ψρ ≡
n−1∑

J=0

aρ(J)φ(J) =
n−1∑

ν=0

Ψρ(Γν) (12a)

Ψρ(Γν) ≡
n−1∑

J=0

aρ(J; Γν)φ(J) (12b)

Here aρ (J) and aρ(J; Γν) are the LCAO coefficients of Ψρ and Ψρ(Γν), respec-
tively. The irreducible representation component of Ψρ in connection with the
state Ψρ(Γν) ought to be:

Xρ(Γν) =

n−1∑
J=0

a∗
ρ(J; Γν)aρ(J; Γν)

n−1∑
ν=0

n−1∑
J=0

a∗
ρ(J; Γν)aρ(J; Γν)

(13)

where a∗
ρ(J; Γν) is the conjugate of aρ(J; Γν). Now we expand equation (11),

using the Born-Karman boundary condition and comparing with equation (12b)
to obtain aρ(J; Γν), and then using equation (13) to obtain Xρ(Γν). This
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is tedious but not too difficult to program. For simplifying the formula, we
introduce the conjugate amount,

Aρ(Γν) =
n−1∑

J=0

ε−Jνaρ(J) (14a)

A∗
ρ(Γν) =

n−1∑

J=0

εJνaρ(J) (14b)

Equation (13) may be simplified and denoted as,

Xρ(Γν) = A∗
ρ(Γν)Aρ(Γν)

n−1∑
ν=0

A∗
ρ(Γν)Aρ(Γν)

(15)

where the MO is not necessarily normalized. To start with the case of the com-
mon symmetric centre, we set n (figure 1) to an even number. As n = 2q, the
centre will be between (q − 1)th and qth atoms, and the LCAO-MO coefficients
for the Jth and (n−J −1)th atoms ought to be equal in absolute value. Accordin-
gly, another pair of conjugate amounts, Bρ(Γν) and B∗

ρ(Γν), can be introduced,

Aρ(Γν) = εν/2
n−1∑

J=0

ε−(J+½)νaρ(J) ≡ εν/2Bρ(Γν) (16a)

A∗
ρ(Γν) = ε−ν/2

n−1∑

J=0

ε(J+½)νaρ(J) ≡ ε−ν/2B∗
ρ(Γν) (16b)

In the summation of Bρ(Γν), the complex coefficient before aρ(n−J − 1) would
be ε−(n−J−½)ν = ε(J+½)ν ; it is conjugated with that before aρ(n − J − 1). We
can then readily collate these two terms and combine them into a real term and
a pure imaginary term. If the common symmetric centre does not exist, the real
and the pure imaginary terms may be obtained. Both Bρ(Γν) and B∗

ρ(Γν) may
be denoted as the summations of isolated real and pure imaginary terms.

Bρ(Γν) = Re[Bρ(Γν)] − Im[Bρ(Γν)]i (17a)

B∗
ρ(Γν) = Re[Bρ(Γν)] + Im[Bρ(Γν)]i (17b)

The irreducible representation component Xρ(Γν) may then become the
following,

Xρ(Γν) = Re2[Bρ(Γν)] + Im2[Bρ(Γν)]
n−1∑
ν=0

{Re2[Bρ(Γν)] + Im2[Bρ(Γν)]}
(18)
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where the real and imaginary parts of Bρ(Γν) may be respectively denoted as:

Re[Bρ(Γν)] =
q−1∑

L=0

aρ(L; Re) cos[(L + ½)πν/q] (19a)

Im[Bρ(Γν)] =
q−1∑

L=0

aρ(L; Im) sin[(L + ½)πν/q] (19b)

Here, the coefficients before the trigonometric functions reflect the symmetrical
and asymmetrical components related to the common space inversion transfor-
mation, and may be obtained from the LCAO-MO coefficients aρ (L) and aρ
(GL), GL = n−L−1, as we did in ref. [6]. When the symmetrical representation
is related to the common inversion transformation, aρ(L;Re) would be zero; and
when the asymmetrical one is related to, aρ(L;Im) would be zero. According to
the symmetrical and asymmetrical states, Ψρ(Γν; g) and Ψρ(Γν; u), in connection
with representation Γν , corresponding representation components for Ψρ ought
to be respectively as follows:

Xρ(Γν; g) = Im2[Bρ(Γν)]
n−1∑
ν=0

{Re2[Bρ(Γν)] + Im2[Bρ(Γν)]}
(20a)

Xρ(Γν; u) = Re2[Bρ(Γν)]
n−1∑
ν=0

{Re2[Bρ(Γν)] + Im2[Bρ(Γν)]}
(20b)

As above, we consider the polyyne of linear polymer molecule as a one
dimensional fuzzy lattice in which the unit cell contains only one atom. If each
lattice is constructed by s atoms, and the LCAO coefficient for the i-th AO (i =
1 to Ai) of the A-th atom (A = 1 to s) in the J-th lattice (J = 0 to n′ − 1) in the
ρ-th MO (Ψρ) is aρ(J, A, i), then replacing equation (12), this MO may be deno-
ted as:

Ψρ ≡
n′−1∑

J=0

s∑

A=1

Ai∑

i=1

aρ(J, A, i)φ(J) =
n′−1∑

ν′=0

Ψρ(Γν′) (21a)

Ψρ(Γν′) ≡
n′−1∑

J=0

s∑

A=1

Ai∑

i=1

aρ(J, A, i; Γν′)φ(J) (21b)

The irreducible representation components related to the fuzzy parallel
translation group above may be used further, but the summation running over
J will be replaced by over J, A, and i. It is notable that for such case
there are sn′ atoms, whereas the number of both lattice points and irreducible
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representations for the fuzzy group is only n′. Of course, we may still examine
the irreducible representation components related to the fuzzy space inversion
symmetrical transformation.

Now we will examine some prototypical molecules. The results will be
strictly correct for the infinite lattice owing to the Born-Karman boundary
condition. Since the molecule is not very small, the desirable results are often
approximate. The related methods ought to be used for larger molecules via pro-
gramming.

4.2. The irreducible representation components for MOs of C16H2, C15NH and
C14N2

We took C16H2, C15NH and C14N2 as the example of the one
dimensional lattice in which each unit lattice contains two atoms (CC or CN),
and considered the πMO. This reduces equation (21) as Ai is 1 and no sum-
mation over i is needed, and s and n′ are 2 and 8, respectively. In this parallel
translation group, the minimum unit length is the distance between two conse-
cutive lattices, i.e., two diatomic distance units, one single and one triplet bond
lengths. There are eight cells including 16 AOs to form a fuzzy one dimensional
crystal. For the corresponding fuzzy parallel translation group, there are eight
irreducible representations, Γν′ (ν′ = 0 to 7; Γ0 = Γ8). According to the method
described above, we calculated the irreducible representation components for the
πMOs of these molecules. Figure 11(A) show the results related to the frontier
MO of these molecules. For the HOMOs of these three molecules, the repre-
sentation components related to Γν′ with ν′ = 2 and 6 are maxima. For their
LUMOs, the representation components with ν′ = 1, 3, 5 and 7 are maxima. As
the space inversion transformation for C16H2 and C14N2, the HOMOs belong
to the pure symmetrical representation (G), but the LUMOs belong to the pure
asymmetrical representation (U). For C15NH without the common space
inversion symmetry, the MOs may include both symmetrical and the asymme-
trical components, simultaneously, and their main representations ought to be
the same as the pure representations of the corresponding MOs of C16H2 and
C14N2 related to the space inversion. Figure 11(B) shows the representation com-
ponents related to the fuzzy parallel translation and the fuzzy space inversion for
the frontier MOs of C15NH, i.e., the products of the representation components
related to these two fuzzy groups. As for figure 12, the irreducible representa-
tion components related to the parallel translation group for some other π-MOs
of these three molecules are shown. It is notable that the maxima of representa-
tion components occur either at (1) ν′ = 2 and 6 or (2) ν′ = 1, 3, 5 and 7. For
π-MOs far from the frontier MO, they belong to case (2). As the representation
components related to the space inversion in C16H2 and C14N2, the representa-
tion of the MO is pure symmetrical or pure asymmetrical, denoted by (G) or (U)
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Figure 11. The plots of irreducible representation components vs. ν′: (G) and (U) denote
symmetry and asymmetry corresponding to space inversion, respectively. (A) related to the
fuzzy parallel translation for frontier MOs of C16H2, C15NH and C14N2, (B) related to both fuzzy
space inversion and fuzzy parallel translation for frontier MOs of C15NH.
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Figure 12. The plots of irreducible representation components vs ν′ for some MOs of C16H2,
C15NH and C14N2, where (G) and (U) denote symmetry and asymmetry related to space inversion,
respectively.

respectively in figure 12. For the MOs of C15NH, both symmetrical and asym-
metrical components appear in their fuzzy representation simultaneously, but
other main representations ought to be similar to the pure representations of
corresponding MOs in C16H2 and C14N2.



1160 X. Zhao / Fuzzy space periodic symmetries for polyynes

5. Conclusions

In this paper, we have analyzed the fuzzy group (set) of the molecular space
symmetry. To start with, we touched upon the one-dimensional translation fuzzy
space set of the linear molecule. The difference between point and space groups
lies in that the former is finite group, but the latter infinite group. For the fuzzy
point groups, we consider mainly the fuzzy characterization due to the difference
between original and symmetry transformed atoms. For the space group, the
fuzzy characterization introduced also arises from the difference between infinite
and finite nature. We focus on and analyze here only the one-dimensional trans-
lation transformation of polyynes and their cyano-derivatives. The space group
has widely been applied to solid state physics, and some of the results are cited
here. The main conclusions include the following.

1. The calculation method for the membership functions of the fuzzy
translation symmetry transformation related to the molecular skeleton
has been established. The membership function approaches to one for
medium molecules, and it will approach to 0.9 for the molecule of more
than tenfold of the translation length. Therefore, if the molecule is not
too small, use of the fuzzy translation symmetry ought to be reasonable.
In crystallography, the dimension of a crystal is much larger than that
of a unit cell, the relative membership function ought to be close to
one. We may thus analyze the problem as an infinite translation sym-
metry in a crystal. However, the corresponding fuzzy sets of the parallel
translation symmetry transformation are not fuzzy groups.

2. For homologous molecules, there are certain relationships between their
property and membership functions of the parallel translation symme-
try transformation. The causes for these relationships are a piece of very
interesting future work.

3. For polyynes (CnH2) and related mono- and dicyano-derivatives
(Cn−1NH, Cn−2N2), the membership functions related to the parallel
translation symmetry transformation are similar. For a certain trans-
lation length, their plot of membership functions vs. the molecular
magnitude (n) become nearly to one curve.

4. For polyynes (CnH2) and dicyano-derivatives (Cn−2N2), there is the
common space inversion symmetry, but for the monocyano-derivatives
(Cn−1NH) there is not such symmetry. In the latter case, they were
analyzed in terms of the fuzzy space inversion symmetry.

5. For the MOs in these molecules, due to their alternating single- and
triple- bonds, two atoms were chosen in a unit, and the member-
ship functions related to the translation only with the even number
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of the inter-atomic distances were analyzed. For the frontier MOs, the
membership functions related to the parallel translation transformations
increase with the molecular size (n) increase, but decrease with the trans-
lation distance (m). As for even m, the corresponding change curves are
smooth. For the same polyyne, the membership functions of HOMOs
are slightly larger than those of LUMOs.

6. For the prototypical molecules, C16H2, C15NH and C14N2, the
membership functions of frontier occupied OMO-j and virtual VMO-j
related to the translation transformation are similar for the same j , in
particular, for C16H2 and C14N2, but not for different j .

7. For the eigenstates and eigenvalues, the Bloch theorem which is based on
the Born-Karman boundary condition was used. It is adopted for our
not-too-small molecules. Using the project operator method in complex
number field, we calculated the representation components of their fron-
tier orbitals corresponding to fuzzy parallel translation symmetry. The
corresponding irreducible representation components of C16H2are very
similar to those of C14N2, but less similar to those of C15NH.

8. Owing to the space inversion symmetry of C16H2 and C14N2, their MOs
are either symmetrical or asymmetrical, i.e., their representation com-
ponents being one or zero. For example, the HOMOs of C16H2 and
C14N2 are symmetrical, but their LUMOs asymmetrical. For C15NH,
which does not have common space inversion symmetry, its MOs include
both symmetrical and asymmetrical representation components. Howe-
ver, its main representations are the same for those ‘pure’ representations
of corresponding MOs for C16H2 and C14N2.
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